The Architecture of a Personal OS

Table of content

A personal OS has layers, like any operating system. Understand the structure before building.

The stack

┌─────────────────────────────────────┐
│           YOU (the user)            │
├─────────────────────────────────────┤
│         Interface Layer             │
│   (chat, voice, shortcuts, apps)    │
├─────────────────────────────────────┤
│          Agent Layer                │
│   (Claude, GPT, specialized bots)   │
├─────────────────────────────────────┤
│         Memory Layer                │
│   (context, history, knowledge)     │
├─────────────────────────────────────┤
│       Integration Layer             │
│   (calendar, email, tasks, files)   │
├─────────────────────────────────────┤
│          Tool Layer                 │
│   (MCP servers, APIs, automations)  │
└─────────────────────────────────────┘

Layer breakdown

LayerComponentsPurpose
InterfaceChat, voice, shortcutsHow you talk to your OS
AgentClaude, GPT, specialistsThe brain(s) that process requests
MemoryShort-term, long-term, episodicPersistent context
IntegrationCalendar, tasks, email, filesTouching your actual life
ToolMCP servers, APIsThe hands that execute actions

Memory types

TypeContainsExample
Short-termCurrent context, recent interactions“We were discussing…”
Long-termDecisions, preferences, patterns“You prefer mornings for deep work”
EpisodicWhat happened when, by topic“Last Tuesday you decided…”

Implementation: Vector DBs (Pinecone, Chroma), structured storage (Notion), or MCP servers.

Integration layer

IntegrationCapabilities
CalendarRead events, create/modify, protect focus time
TasksCreate, update status, smart prioritization
EmailRead inbox, draft, categorize, follow up
FilesAccess, search, create/edit documents
NotesQuery knowledge base, extract insights

Data flow example

User: "What should I focus on today?"

1. Interface receives input
2. Agent processes request
3. Queries memory: recent context, ongoing projects
4. Queries integrations: calendar, tasks, emails
5. Synthesizes with your stated priorities
6. Returns: prioritized focus list with reasoning

Single vs multi-agent

ApproachProsCons
Single agentSimple, unified contextLimited by one model
Multi-agentSpecialized, more capableComplex orchestration

Start with single agent. Add specialists when you hit limits.

Build incrementally

PhaseAdd
Week 1Claude Code + basic MCP servers
Week 2Memory (episodic-memory plugin)
Week 3One integration (calendar or tasks)
Week 4Another integration
OngoingRefine based on actual usage

Each layer should provide value independently before adding the next.


Next: Principles for AI Delegation

Topics: personal-os architecture ai-agents