The Architecture of a Personal OS
Table of content
A personal OS has layers, like any operating system. Understand the structure before building.
The stack
┌─────────────────────────────────────┐
│ YOU (the user) │
├─────────────────────────────────────┤
│ Interface Layer │
│ (chat, voice, shortcuts, apps) │
├─────────────────────────────────────┤
│ Agent Layer │
│ (Claude, GPT, specialized bots) │
├─────────────────────────────────────┤
│ Memory Layer │
│ (context, history, knowledge) │
├─────────────────────────────────────┤
│ Integration Layer │
│ (calendar, email, tasks, files) │
├─────────────────────────────────────┤
│ Tool Layer │
│ (MCP servers, APIs, automations) │
└─────────────────────────────────────┘
Layer breakdown
| Layer | Components | Purpose |
|---|---|---|
| Interface | Chat, voice, shortcuts | How you talk to your OS |
| Agent | Claude, GPT, specialists | The brain(s) that process requests |
| Memory | Short-term, long-term, episodic | Persistent context |
| Integration | Calendar, tasks, email, files | Touching your actual life |
| Tool | MCP servers, APIs | The hands that execute actions |
Memory types
| Type | Contains | Example |
|---|---|---|
| Short-term | Current context, recent interactions | “We were discussing…” |
| Long-term | Decisions, preferences, patterns | “You prefer mornings for deep work” |
| Episodic | What happened when, by topic | “Last Tuesday you decided…” |
Implementation: Vector DBs (Pinecone, Chroma), structured storage (Notion), or MCP servers.
Integration layer
| Integration | Capabilities |
|---|---|
| Calendar | Read events, create/modify, protect focus time |
| Tasks | Create, update status, smart prioritization |
| Read inbox, draft, categorize, follow up | |
| Files | Access, search, create/edit documents |
| Notes | Query knowledge base, extract insights |
Data flow example
User: "What should I focus on today?"
1. Interface receives input
2. Agent processes request
3. Queries memory: recent context, ongoing projects
4. Queries integrations: calendar, tasks, emails
5. Synthesizes with your stated priorities
6. Returns: prioritized focus list with reasoning
Single vs multi-agent
| Approach | Pros | Cons |
|---|---|---|
| Single agent | Simple, unified context | Limited by one model |
| Multi-agent | Specialized, more capable | Complex orchestration |
Start with single agent. Add specialists when you hit limits.
Build incrementally
| Phase | Add |
|---|---|
| Week 1 | Claude Code + basic MCP servers |
| Week 2 | Memory (episodic-memory plugin) |
| Week 3 | One integration (calendar or tasks) |
| Week 4 | Another integration |
| Ongoing | Refine based on actual usage |
Each layer should provide value independently before adding the next.
Next: Principles for AI Delegation
Get updates
New guides, workflows, and AI patterns. No spam.
Thank you! You're on the list.