Multi-Agent Knowledge Management

Table of content

A single AI agent doing knowledge management runs into walls fast. It can’t ingest content while simultaneously synthesizing insights. Its context fills up processing one day’s notes. It lacks the specialized skills needed for different knowledge tasks.

Multi-agent systems solve this by dividing work across specialized agents that collaborate through defined patterns.

Why Multiple Agents

Single-agent PKM forces tradeoffs. Your agent is either good at quick capture or deep analysis, not both. It either stays focused on your current task or handles background processing.

Single AgentMulti-Agent
Context overload on large tasksEach agent gets focused context
One model for everythingBest model per task type
Sequential processingParallel execution
Generalist promptsSpecialized roles
Manual triggersAutomated workflows

Jinyoung Kim’s AI4PKM demonstrates this in practice. His system runs hourly maintenance agents, daily ingestion agents, and weekly synthesis agents, each optimized for its specific job.

Architecture Patterns

Three patterns dominate multi-agent PKM systems. Pick based on your workflow needs.

Orchestrator Pattern

One agent coordinates all others. It receives requests, routes them to specialists, and merges results.

                 ┌─────────────┐
                 │ Orchestrator│
                 └──────┬──────┘
           ┌───────────┼───────────┐
           ▼           ▼           ▼
      ┌────────┐  ┌────────┐  ┌────────┐
      │ Ingest │  │ Process│  │Synthesize│
      └────────┘  └────────┘  └────────┘

The orchestrator handles task decomposition, agent selection, and result aggregation. CrewAI’s hierarchical process implements this with a manager agent that delegates to crew members.

Use when:

Pipeline Pattern

Agents pass output sequentially. Each stage transforms content for the next.

┌────────┐    ┌────────┐    ┌────────┐    ┌────────┐
│ Capture│ ─► │ Enrich │ ─► │ Connect│ ─► │ Store  │
└────────┘    └────────┘    └────────┘    └────────┘

AI4PKM’s Daily Ingestion workflow uses this pattern: extract metadata, convert formats, add summaries and tags, link to existing notes, update indexes.

Use when:

Swarm Pattern

Agents work independently and merge results. No central coordinator.

┌────────┐  ┌────────┐  ┌────────┐
│ Agent A│  │ Agent B│  │ Agent C│
└────┬───┘  └────┬───┘  └────┬───┘
     └───────────┼───────────┘
          ┌───────────┐
          │  Combine  │
          └───────────┘

Use when:

See Subagent Patterns for detailed dispatch strategies.

The Orchestrator’s Job

In hierarchical systems, the orchestrator does real work.

ResponsibilityImplementation
Task decompositionBreak user request into subtasks
Agent selectionMatch subtask to specialist capability
Context distributionSend each agent only relevant context
Result mergingCombine outputs coherently
Error recoveryRetry or reroute failed tasks
Progress trackingMonitor completion across agents

The orchestrator itself shouldn’t do knowledge work. It coordinates. Think manager, not worker.

PKM Pipeline Example

A practical daily knowledge pipeline:

┌──────────────────────────────────────────────────────────────┐
│                     DAILY PIPELINE                            │
├──────────────────────────────────────────────────────────────┤
│                                                              │
│  ┌─────────┐   ┌─────────┐   ┌─────────┐   ┌─────────┐      │
│  │ Ingest  │ → │ Process │ → │ Connect │ → │Synthesize│     │
│  └─────────┘   └─────────┘   └─────────┘   └─────────┘      │
│       │             │             │             │            │
│       ▼             ▼             ▼             ▼            │
│  Voice notes   Add metadata   Link to       Generate        │
│  Web clips     Summarize      existing      daily           │
│  Photos        Tag content    notes         roundup         │
│                                                              │
└──────────────────────────────────────────────────────────────┘

Each agent runs independently:

AI4PKM schedules these through cron jobs. The agents don’t need human triggers after initial setup.

When Single vs Multi

Not every PKM task needs multiple agents. Single agents handle plenty.

Task TypeSingle AgentMulti-Agent
Quick lookupWorks wellOverkill
Single note editWorks wellOverkill
Batch processingContext limitsHandles scale
Daily synthesisSlowParallel processing
Cross-vault analysisStrugglesEach agent covers a section
Background maintenanceBlocks other workRuns independently

Start with single-agent workflows. Add agents when you hit specific limits:

Implementation Paths

Framework-Based

Use existing multi-agent frameworks:

Custom Pipelines

Build simpler pipelines with scheduled scripts:

# Daily PKM pipeline
0 6 * * * claude --task "ingest" vault/inbox/
0 7 * * * claude --task "process" vault/notes/
0 8 * * * claude --task "connect" vault/
0 9 * * * claude --task "synthesize" vault/ --output daily.md

Hybrid Approach

Combine manual orchestration with automated specialists. You decide what runs; agents do the work.

This matches the delegation principle: keep judgment human, automate execution.

Key Tradeoffs

BenefitCost
Parallel processingMore complexity to manage
Specialized modelsHigher API costs
Automated workflowsSetup time
Focused contextsAgent coordination overhead

Multi-agent systems require upfront investment. They pay off when your knowledge base grows large enough that single-agent processing becomes the bottleneck.


Next: Automated PKM Workflows

Topics: ai-agents knowledge-management architecture